Authorizations
Bearer token for authentication, obtained after signing up and generating an API key.
Body
A JSON string defining the prediction request parameters.
Required fields:
model_id(str) - Model ID from your previous/v1/fitcalltask(str) - Task type:"classification"or"regression"
Optional Config Parameters:
n_estimators(int) - Number of estimators in the ensemble (1-10)model_path(str) - Model checkpoint path from HuggingFacecategorical_features_indices(List[int]) - Indices of categorical featuressoftmax_temperature(float) - Temperature for softmax scalingaverage_before_softmax(bool) - Average before applying softmaxignore_pretraining_limits(bool) - Ignore pretraining limitsinference_precision(str) - Inference precision ("float32", "float16", "auto")random_state(int) - Random seed for reproducibilitybalance_probabilities(bool) - Balance class probabilities
Optional Params (output configuration):
output_type(str) - Determines prediction output format- Classification:
"probas"(default, probabilities) or"preds"(predictions) - Regression:
"mean"(default, mean value) or"full"(includes quantiles, ei, pi)
- Classification:
CSV file containing the dataset to predict on.
Response
Prediction completed successfully — returns predicted values or probabilities depending on the task.
Time taken (in seconds) to complete the prediction.
The prediction output. Format depends on task and output_type:
- Regression: List of floats (e.g.,
[1250.5, 3200.8, 980.2]) - Classification with
output_type: probas: List of lists (probabilities) (e.g.,[[0.1, 0.9], [0.8, 0.2]]) - Classification with
output_type: preds: List of classes (e.g.,["class_0", "class_1"]) Regression predictions or classification probabilities
Specifies the type of task to perform — either classification or regression.
classification, regression The number of credits consumed by this API call.
Your remaining credit balance after this request.