Run inference using a previously fitted TabPFN model. Upload your test dataset and specify the model ID from your previous /v1/fit call. The endpoint returns predicted probabilities or values depending on the task type.
Bearer token for authentication, obtained after signing up and generating an API key.
A JSON string defining the prediction request parameters.
Required fields:
model_id (str) - Model ID from your previous /v1/fit calltask (str) - Task type: "classification" or "regression"Optional Config Parameters:
systems (list[str]) - default: ["preprocessing", "text"].
The following preprocessing systems are supported:
["preprocessing"] - Applies skrub preprocessing,["text"] - Adds text embeddings for text columns.n_estimators (int) - Number of estimators in the ensemble (1-10)model_path (str) - Model checkpoint path from HuggingFacecategorical_features_indices (List[int]) - Indices of categorical featuressoftmax_temperature (float) - Temperature for softmax scalingaverage_before_softmax (bool) - Average before applying softmaxignore_pretraining_limits (bool) - Ignore pretraining limitsinference_precision (str) - Inference precision ("float32", "float16", "auto")random_state (int) - Random seed for reproducibilitybalance_probabilities (bool) - Balance class probabilitiesOptional Params (output configuration):
output_type (str) - Determines prediction output format
"probas" (default, probabilities) or "preds" (predictions)"mean" (default, mean value) or "full" (includes quantiles, ei, pi)CSV file containing the dataset to predict on.
Prediction completed successfully — returns predicted values or probabilities depending on the task.
Time taken (in seconds) to complete the prediction.
The prediction output. Format depends on task and output_type:
[1250.5, 3200.8, 980.2])output_type: probas: List of lists (probabilities) (e.g., [[0.1, 0.9], [0.8, 0.2]])output_type: preds: List of classes (e.g., ["class_0", "class_1"])Specifies the type of task to perform — either classification or regression.
classification, regression The number of credits consumed by this API call.
Your remaining credit balance after this request.
The inference parameters that were used during prediction.