# Energy consumption forecasting
def forecast_energy_consumption(consumption_data, horizon_hours=24):
ts_model = TabPFNTimeSeries()
# Hourly consumption forecast
consumption_forecast = ts_model.forecast(
data=consumption_data,
horizon=horizon_hours,
confidence_level=0.95
)
# Peak demand prediction
peak_demand = consumption_forecast.predictions.max()
peak_hour = consumption_forecast.predictions.argmax()
# Load balancing recommendations
load_balancing = {
'peak_demand': peak_demand,
'peak_hour': peak_hour,
'recommended_generation': peak_demand * 1.1, # 10% buffer
'demand_response_potential': peak_demand * 0.15 # 15% reduction potential
}
return consumption_forecast, load_balancing
# Renewable energy forecasting
def forecast_renewable_generation(weather_data, generation_data, horizon_hours=24):
ts_model = TabPFNTimeSeries()
# Multi-variate forecasting with weather data
renewable_forecast = ts_model.forecast_multivariate(
data=pd.concat([weather_data, generation_data], axis=1),
horizon=horizon_hours,
series_names=['solar_irradiance', 'wind_speed', 'solar_generation', 'wind_generation'],
confidence_level=0.90
)
return renewable_forecast