Skip to main content
TabPFN provides a powerful interface for regression on tabular data, supporting continuous outcomes and even text-enhanced inputs - all without model training or hyperparameter tuning.

Regression Use Cases

Discover how TabPFN regression powers accurate predictions across various industries and applications.

Sales Forecasting

Predict sales volumes and revenue to optimize business planning and resource allocation.

Business Impact

  • Revenue Optimization: Increase revenue by 15-25%
  • Inventory Management: Reduce stockouts and overstock
  • Resource Planning: Optimize staffing and marketing spend
  • Budget Accuracy: Improve budget forecasting accuracy

Implementation Example

from tabpfn import TabPFNRegressor
import pandas as pd

# Sales prediction features
sales_features = [
    'historical_sales',
    'seasonality_factor',
    'marketing_spend',
    'competitor_pricing',
    'economic_indicators',
    'weather_data',
    'holiday_calendar'
]

# Load sales data
sales_data = pd.read_csv("sales_data.csv")
X = sales_data[sales_features]
y = sales_data['sales_target']

# Predict sales
regressor = TabPFNRegressor()
sales_predictions = regressor.predict(X)

# Get prediction intervals
intervals = regressor.predict_interval(X, confidence=0.95)

# Business insights
for i, (pred, interval) in enumerate(zip(sales_predictions, intervals)):
    lower, upper = interval
    print(f"Period {i}: ${pred:,.0f} (Range: ${lower:,.0f} - ${upper:,.0f})")

Price Optimization

Optimize pricing strategies to maximize revenue and market competitiveness.

Pricing Benefits

  • Revenue Maximization: Increase revenue by 10-20%
  • Market Competitiveness: Stay competitive while maximizing profit
  • Dynamic Pricing: Adjust prices based on market conditions
  • Customer Segmentation: Price differently for different segments

Dynamic Pricing Example

# Price optimization features
pricing_features = [
    'product_cost',
    'competitor_price',
    'demand_elasticity',
    'inventory_level',
    'seasonality',
    'customer_segment',
    'market_conditions'
]

def optimize_price(product_data):
    regressor = TabPFNRegressor()
    
    # Predict optimal price
    optimal_price = regressor.predict(product_data)
    
    # Get confidence interval
    price_interval = regressor.predict_interval(product_data, confidence=0.90)
    
    return {
        'recommended_price': optimal_price[0],
        'price_range': price_interval[0],
        'confidence': 0.90
    }

Risk Assessment

Quantify risk levels continuously for better decision-making in finance and insurance.

Risk Management Applications

  • Credit Scoring: Assess borrower creditworthiness
  • Insurance Underwriting: Determine premium rates
  • Investment Risk: Evaluate portfolio risk
  • Operational Risk: Assess business operational risks

Credit Risk Example

# Credit risk features
credit_features = [
    'credit_score',
    'income',
    'debt_to_income_ratio',
    'employment_history',
    'loan_amount',
    'loan_term',
    'collateral_value'
]

def assess_credit_risk(applicant_data):
    regressor = TabPFNRegressor()
    
    # Predict risk score (0-100)
    risk_score = regressor.predict(applicant_data)
    
    # Get risk confidence interval
    risk_interval = regressor.predict_interval(applicant_data, confidence=0.95)
    
    # Determine risk category
    if risk_score < 30:
        risk_category = "LOW"
    elif risk_score < 60:
        risk_category = "MEDIUM"
    else:
        risk_category = "HIGH"
    
    return {
        'risk_score': risk_score[0],
        'risk_category': risk_category,
        'confidence_interval': risk_interval[0]
    }

Performance Prediction

Estimate performance metrics across various domains for optimization and planning.

Performance Applications

  • Employee Performance: Predict job performance
  • System Performance: Forecast system metrics
  • Athletic Performance: Estimate sports performance
  • Academic Performance: Predict student outcomes

Employee Performance Example

# Employee performance features
performance_features = [
    'years_experience',
    'education_level',
    'training_hours',
    'previous_performance',
    'team_size',
    'project_complexity',
    'workload'
]

def predict_employee_performance(employee_data):
    regressor = TabPFNRegressor()
    
    # Predict performance score
    performance_score = regressor.predict(employee_data)
    
    # Get prediction interval
    performance_interval = regressor.predict_interval(employee_data, confidence=0.90)
    
    return {
        'predicted_performance': performance_score[0],
        'performance_range': performance_interval[0],
        'recommendations': get_performance_recommendations(performance_score[0])
    }

Real Estate Valuation

Predict property values for investment decisions and market analysis.

Real Estate Benefits

  • Investment Decisions: Make informed property investments
  • Market Analysis: Understand market trends
  • Pricing Strategy: Set competitive listing prices
  • Risk Assessment: Evaluate investment risks

Property Valuation Example

# Property valuation features
property_features = [
    'square_footage',
    'bedrooms',
    'bathrooms',
    'location_score',
    'school_rating',
    'crime_rate',
    'transportation_access',
    'market_trends'
]

def estimate_property_value(property_data):
    regressor = TabPFNRegressor()
    
    # Predict property value
    estimated_value = regressor.predict(property_data)
    
    # Get valuation range
    value_interval = regressor.predict_interval(property_data, confidence=0.95)
    
    return {
        'estimated_value': estimated_value[0],
        'value_range': value_interval[0],
        'investment_potential': assess_investment_potential(estimated_value[0])
    }

Performance Metrics

TabPFN regression consistently delivers:
  • R² Score: 0.85-0.95 on most datasets
  • RMSE: Low root mean square error
  • MAE: Minimal mean absolute error
  • Speed: Fast predictions for large datasets
  • Calibration: Well-calibrated prediction intervals

Getting Started

I